PII: S0040-4020(96)00470-X

The Reduction of Functionalized Pyrazolium Salts as a Stereoselective Route to Functionalized Pyrazolidines.

Luis A. Bañuelos^a, Purificación Cuadrado^a, Ana M.González-Nogal^a,*, Isabel López-Solera^b, Francisco J.Pulido^a and Paul R.Raithby^b.

^aDepartamento de Química Orgánica, Universidad de Valladolid, 47011-Valladolid, Spain.

bUniversity Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.

Abstract: Functionalized pyrazolium salts 1 react with metal complex hydrides (LiAlH4 and NaBH4) to give pyrazolidines 2 with good-to-excellent levels of diastereoselectivity. The stereochemical course of the reduction is essentially anti, leading to trans,transpyrazolidines. The relative configuration of the crystalline pyrazolidine 2c has been determined by X-ray crystallographic analysis. Copyright © 1996 Elsevier Science Ltd

In the course of our investigations on the reactivity of activated azoles toward complex metal hydrides, organometallic compounds and other nucleophiles, two main processes were observed: a) addition of the nucleophilic reagents to the ring giving azoline derivatives and b) reductive ring cleavage leading to open chain products. Thus, 4-functionalized-3,5-dialkylisoxazoles and isoxazolium salts react with complex metal hydrides¹, organolithium, organomagnesium and organoaluminium compounds² to give regioselectively 2-, 3- and 4-isoxazolines. On the other hand, N-alkylisoxazolium salts and N-alkylisothiazolium salts undergo ring cleavage when treated with lithium dialkylcuprates and complex metal hydrides leading to β -enaminoketones^{3,4} and β -enaminothioketones⁵. Ring cleavage-closure reactions are also observed when 3-unsubstituted isoxazoles and isoxazolium salts react with dinucleophiles^{6,7}.

The preparation of 3-pyrazolines by reaction of N-methylpyrazolium salts with complex metal hydrides has also been reported^{8,9}. Nevertheless, we have found that the reduction of 1,3,5-trisubstituted 2-alkylpyrazolium salts with complex metal hydrides gives 3-pyrazolines¹⁰, whereas the reduction of 3- and/or 5-unsubstituted 2-ethylpyrazolium salts with the same hydrides leads to pyrazolidines¹¹ as major products.

RESULTS and DISCUSSION

We now report that 2-alkylpyrazolium tetrafluoroborates 1 bearing electron-withdrawing group at C-4, and occasionally at C-5, react easily with complex metal hydrides giving stereoselectively functionalized pyrazolidines 2, 5 and 6. Some of these processes also afforded functionalized 3-pyrazolines 3 and 4.

The functional group attached at C-4 markedly increases the reactivity of nucleus towards attack of hydride, leading to their total reduction and formation of pyrazolidines 2a-h (Scheme 1), in which the functional group remains unchanged in all cases, except when this is a carbonyl group. The reduction of 4-acetyl- 1i and 4-benzoylpyrazolium salt 1j with NaBH4 gave the corresponding tertiary alcohols 5i and 5j, whereas they react with LiAlH4 to give the 4-alkylidenpyrazolidines 6i and 6j resulting from spontaneous dehydration in the reaction conditions (Scheme 2).

Scheme 1

Scheme 2

The only 5-functionalized pyrazolium salt tested was the 2-ethyl-5-ethoxycarbonyl-3-methyl-1-phenylpyrazolium tetrafluoroborate 1k, which react with NaBH4 at room temperature to give the pyrazolidine 5k in which the ester group has been reduced to alcohol. Using LiAlH4 at room temperature, together with 5k, we obtained 4k, the more stable of the two posible 3-pyrazolines (double bond conjugated with ester group). The reduction of 1k with NaBH4 at -20°C led only to 8% of pyrazolidine 2k in which the functional group remains unaffected. Probably the activation of the nucleus by the ethoxycarbonyl group in C-5 is less, consequently the reactivity of the ring and the ester group towards hydrides is similar, even with NaBH4, leading in all conditions to the 5-hydroxymethylpyrazolidine 5k as major product (Scheme 3).

In general, the reactivity with both hydrides (LiAlH4 and NaBH4) is similar. However, the 4-bromopyrazolium salts afforded higher yields of pyrazolidines in their reaction with NaBH4 than LiAlH4, because with this hydride, even at 0°C, the hydrogenolysis of the C-Br bond probably competes with the reduction of the nucleus.

The results obtained are summarized in Table 1.

Although the reduction with LiAlH4 or NaBH4 is not stereoselective and consequently a mixture of diastereoisomer pyrazolidines may be formed, we have obtained one diastereoisomer, as a sole or majority product. The 4-functionalized 3,5-disubstituted pyrazolium salts afforded 3,4-trans,4,5-trans-pyrazolidines, except when the functional group in C-4 is a bromine atom. In this case, the pyrazolidine formed had 3,4-cis,4,5-trans configuration.

This stereochemical outcome is consistent with initial attack of hydride at more electron-deficient C-5, followed by coordination of electrophilic reducing agent (AlH3 or BH3) at C-4 in the intermediate 7 from the opposite side to give the less hindered iminium salt 8 with the larger substituents at C-4 and C-5 in an *anti*-orientation. This is then reduced by metal hydride by either an intramolecular hydride delivery to provide 3,4-cis,4,5-trans-pyrazolidines or an intermolecular hydride transfer to originate the more stable 3,4-trans,4,5-trans-pyrazolidine (Scheme 4).

The special behaviour of the 4-bromo derivatives is difficult to explain. Probably, an intramolecular hydride delivery from a Br-coordinated aluminium or borohydride could be involved.

The reduction of 4-acylpyrazolium salts with NaBH4 increased the number of possible diastereoisomers. The carbonyl group was also reduced, leading to a mixture of two epimeric alcohols (syn and anti) of the corresponding trans,trans-pyrazolidine. The main product can be predicted on the basis of Cram's rule. On the other hand, E- and Z-4-alkyliden-3,5-cis-pyrazolidine obtained, when LiAlH4 was used, could arise by subsequent anti-elimination in the syn- and anti-alkoxyaluminium intermediate, respectively.

The 5-functionalized 4-unsubstituted pyrazolium salt 1k showed a less diastereoselectivity leading to mixtures of two posible cis- and trans-pyrazolidines. At room temperature, with both hydrides, an approximate 1:1 ratio of two isomers was obtained. However, at lower temperatures better selectivity was achieved. At -20°C, with both hydrides, a trans: cis = 4:1 mixture was isolated.

Table 1 Reduction of functionalised pyrazolium tetrafluoborates 1 with complex metal hydrides^a.

Substrate	Hydride	Solvent	Products and	Stereoisomer
			Yields (%)b	distribution (%)
1 _a	LiAlH4	Et ₂ O	2 _a (77)	3,4-trans (100)
$1_{\mathbf{a}}$	NaBH4	EtOH	$2_{a}(36) +$	3,4-trans (100)
			$3_{a}(37)$	
1 b	LiAlH4	Et ₂ O	2_{b} (83)	3,4-trans, $4,5$ -trans (85) +
				3,4-cis,4,5-trans (15)
1 b	LiAlH4	THF	2 _b (91)	3,4-trans,4,5-trans (88) +
1.	M-DII.	E	2- (70)	3,4-cis,4,5-trans (12)
1 _b	NaBH4	EtOH	2 _b (79)	3,4-trans, $4,5$ -trans (80) +
1	LiAlH4	THF	2_{c} (52) +	3,4-cis,4,5-trans (20) 3,4-trans,4,5-trans (100)
1 _c	LIMINA	Tru	$\frac{2c}{4c}$ (26)	3,4-11ans,4,3-11ans (100)
$1_{\mathbf{c}}$	NaBH4	EtOH	2_{c} (81)	3,4-trans,4,5-trans (100)
_	LiAlH4 ^c		2 _d (45)	3,4-cis (100)
1 d	NaBH4	Et2O EtOH		3,4-cis (100) 3,4-cis (100)
1 _d	•		2 _d (74)	• • •
1e	LiAlH4 ^C	Et2O	2 _e (32)	3,4-cis,4,5-trans (100)
1e	NaBH4	EtOH	2e (61)	3,4-cis,4,5-trans (100)
$1_{\mathbf{f}}$	LiAlH4 ^c	Et ₂ O	2_{f} (26)	3,4-cis,4,5-trans (85) +
$1_{\mathbf{f}}$	NaBH4	EtOH	2f (80)	3,4-trans,4,5-trans (15) 3,4-cis,4,5-trans (78) +
11	Nа БП4	EiOn	21 (00)	3,4-trans,4,5-trans (22)
1 g	LiAlH4	Et ₂ O	2g (62)	3,4-trans, $4,5$ -trans (22) 3,4-trans, $4,5$ -trans (100)
1g	NaBH4	EtOH	2g(32) + 2g(43) +	3,4-trans, $4,5$ -trans (100)
^g	1145114	24011	3_{g}^{g} (25)	5,7 mans, 1,5 mans (100)
1 _h	LiAlH4	Et ₂ O	2_{h}^{g} (35) +	3,4-trans,4,5-trans (100)
-11		2.20	$3_h (21) + 4_h (14)$	3, 1, 2, 2, 1
1 _h	LiAlH4 ^d	THF	6 _h (38) +	3.5-cis (71) + 3.5 -trans (29)
-11	Dimina	1111	$3_h (35) + 4_h (9)$	5,5-cis (11) 1 5,5-114ns (25)
1 _h	LiAlH4 ^{d,e}	THF	3h (55) + 4h (22)	
1 _h	NaBH4	EtOH	3h (73) + 4h (22) 3h (73) + 4h (18)	
î _i	LiAlH4	Et ₂ O	6 _i (60)	Z,3,5-cis (45) + $E,3,5$ -cis (55)
1 _i	NaBH4	EtOH	5 _i (75)	3,4-trans, $4,5$ -trans f (100)
$\hat{1}_{\mathbf{j}}^{\mathbf{i}}$	LiAlH4	Et ₂ O	6 _i (71)	$Z_{3,5-cis}$ (35) + $E_{3,5-cis}$ (65)
îj 1	NaBH4	EtOH	5j (68)	syn,3,4-trans,4,5-trans (70) +
^)	1142114	12011	5 (00)	anti,3,4-trans,4,5-trans (30)
$1_{\mathbf{k}}$	LiAlH4	Et ₂ O	5_{k} (52) +	3.5-cis (53) + 3.5 -trans (47)
	•	2	4 _k (34)	-, (,,,,,, -
$1_{\mathbf{k}}$	LiAlH4 ^e	Et ₂ O	5 _k (83)	3.5-cis (20) + 3.5 -trans (80)
	NaBH4	EtOH	5 _k (85)	3,5-cis (55) + $3,5$ -trans (45)
1 k				
1 _k 1 _k	NaBH4 ^e	EtOH	$2_{k}(8) +$	3,5-trans (100)

a Reactions were carried out at r.t. using a molar ratio 1:hydride=1:1. b Yields refer to isolated pure products. c Carried out at 0°C. d Molar ratio 1:hydride=1:2. e Carried out at -20°C. f Mixture of epimers in the hydroxyethyl group.

So far as we know, functionalized pyrazolidines with electron-withdrawing groups have not been previously described. As a result of this, there is no data available on coupling constants that we could use for stereochemical elucidation. Stereochemistries of all pyrazolidines were asigned by ¹H-NOESY and ¹H-NOE difference spectroscopy, and relative configurations confirmed by X-ray diffraction analysis of one of them (2c).

The pyrazolidine 2c showed an enhancement in the 5-methyl doublet resonance when the 4-H signal was irradiated; but led to no observable NOE for the 3-H doublet resonance. Alternatively, irradiation of the 5-methyl doublet gave an increase in the area of the 5-H and 4-H resonances. From these results, a trans,trans-configuration was assigned for 2c. The X-ray crystal structure of 2c was determined to confirm its geometrical arrangement and the molecular structure is shown in Fig. 1 together with the atomic numbering scheme. The bond distances and angles are in good agreement with the expected values. 12

Fig. 1 The molecular structure of the pyrazolidine 2c

The conformation of the pyrazolidine ring is near to half-chair with N-2 (0.15 A) and C-3 (-0.43 A) out of the mean plane defined by atoms N-1, C-4 and C-5. The nitro group is in *trans* position with respect to the ethoxycarbonyl and methyl groups, respectively. The two rings are not coplanar, the angle between them being 43.90. Bond lengths and angles are listed in Tables 2 and 3, respectively.

A complete assignment of the relative stereochemistries of the remaining pyrazolidines was performed by a detailed investigation of NOEs throughout the molecules. The configuration 3,4-trans of 2a, 2b, 2g, 2h, 5i and 5j were assigned on the basis of NOE effect or NOESY interactions between 3-Me and 4-H. Furthermore, the 4,5-trans relationship of 4-H and 5-H in the ring of

Table 2. Bond lengths (A) and angles (0) for 2c.

N(1)-C(11)	1.428(4)	N(1)-N(2)	1.433(3)
N(1)-C(5)	1.484(4)	N(2)-C(3)	1-457(4)
N(2)-C(21)	1.474(4)	N(3)-O(4)	1.165(5)
N(3)-O(3)	1.154(5)	N(3)-C(4)	1.497(5)
O(1)-C(31)	1.191(4)	O(2)-C(31)	1.309(4)
O(2)-C(32)	1.457(4)	C(3)-C(31)	1.511(4)
C(3)-C(4)	1.516(4)	C(4)-C(5)	1.527(5)
C(5)-C(51)	1.519(5)	C(11)-C(16)	1.382(5)
C(11)-C(12)	1.390(5)	C(12)-C(13)	1.406(6)
C(13)-C(14)	1.353(6)	C(14)~C(15)	1.352(6)
C(15)-C(16)	1.381(5)	C(21)-C(22)	1.498(5)
C(32)-C(33)	1.472(5)		
C(11)-N(1)-N(2)	113.7(2)	C(11)-N(1)-C(5)	118.1(3)
N(2)-N(1)-C(5)	110.1(2)	N(1)-N(2)-C(3)	103.4(2)
N(1)-N(2)-C(21)	110.0(2)	C(3)-N(2)-C(21)	114.7(2)
O(4)-N(3)-O(3)	121.9(6)	O(4)-N(3)-C(4)	120.2(4)
O(3)-N(3)-C(4)	117.8(5)	C(31)-O(2)-C(32)	117.1(3)
N(2)-C(3)-C(31)	113.3(3)	N(2)-C(3)-C(4)	104.6(2)
C(31)-C(3)-C(4)	114.6(3)	N(3)-C(4)-C(3)	110.7(3)
N(3)-C(4)-C(5)	112.8(3)	C(3)-C(4)-C(5)	103.2(3)
N(1)-C(5)-C(51)	112.3(3)	N(1)-C(5)-C(4)	103.8(3)
C(51)-C(5)-C(4)	114.2(3)	C(16)-C(11)-C(12)	119.0(3)
C(16)-C(11)-N(1)	121.9(3)		118.9(3)
C(11)-C(12)-C(13)	119.0(4)		120.6(4)
C(15)-C(14)-C(13)	120.2(4)	C(14)-C(15)-C(16)	121.0(4)
C(15)-C(16)-C(11)	120.1(4)	N(2)-C(21)-C(22)	110.3(3)
0(1)-0(31)-0(2)	124.9(3)	0(1)-c(31)-c(3)	123.7(3)
O(2)-C(31)-C(3)	111.4(3)	O(2)-C(32)-C(33)	107.8(3)

Symmetry transformations used to generate equivalent atoms:

Table 3. Atomic coordinates (\times 10 4) and equivalent isotropic displacement parameters ($\overset{\circ}{A}{}^2$ × 10 3) for 2c. U (eq) is defined as one third of the trace of orthogonalized U $_{ij}$ tensor.

	х	у	Z	U(eq)
N(1)	-3676(3)	-1126(3)	8905(1)	70(1)
N(2)	-2495(3)	16(3)	8806(1)	63(1)
N(3)	~374(5)	-3865(5)	9150(2)	120(1)
0(1)	1367(3)	-169(4)	9267(1)	119(1)
0(2)	425(2)	815(3)	8412(1)	73(1)
0(3)	679(8)	-4268(7)	9485(3)	290(4)
0(4)	~778(5)	-4621(5)	8737(2)	154(2)
C(3)	-1147(3)	-1042(4)	8799(1)	64(1)
C(4)	-1212(4)	-2312(4)	9260(1)	81(1)
C(5)	-2955(4)	-2580(4)	9230(1)	80(1)
C(11)	~4840(4)	-1426(4)	8417(2)	72(1)
C(12)	-6023(4)	-2550(5)	8457(2)	96(1)
C(13)	-7207(5)	-2795(6)	7984(3)	110(2)
C(14)	-7210(5)	-1935(7)	7500(2)	113(2)
C(15)	-6069(5)	-828(6)	7465(2)	97(1)
C(16)	-4886(4)	-550(5)	7919(1)	78(1)
C(21)	-2274(4)	1310(4)	9247(1)	80(1)
C(22)	-3696(5)	2378(5)	9197(2)	109(1)
C(31)	365(4)	-91(4)	8860(2)	72(1)
C(32)	1828(4)	1796(5)	8414(2)	88(1)
C(33)	1694(5)	2608(5)	7858(2)	110(1)
C(51)	-3451(6)	-2736(5)	9804(2)	112(2)

pyrazolidines 2b, 2e, 2g, 2h, 5i and 5j was evident since no NOE was observed between these two protons, but the 5-Me group showed a significant NOE effect with the 4-H. On the other hand, the 3,4-cis configuration for 2d, 2e, and 2f was also determined in a similar manner. In these cases a strong NOE between 3-H and 4-H was observed. The weaker NOE effect between 3-H and 5-H or 3-Me and 5-Me of 4-alkylidenpyrazolidines 6h, 6i and 6j indicated a 3,5-cis configuration, as a result of dehydration of the correponding 3,4-trans,4,5-trans-4-hydroxyalkylpyrazolidines. Furthermore, the Z and E geometry of the double bond of the two 6j isomers could also be determined from NOE experiments. Irradiation of the olefinic proton at δ 6.32 showed enhancement of the 3-H at δ 3.75 and 3-Me at δ 1.19 of the Z-isomer. Meanwhile, a NOE effect was observed between the olefinic proton at δ 6.39 and 5-H signal at δ 4.29 and 5-Me at δ 1.54 of the E-isomers.

Finally, the configuration 3,5-cis and 3,5-trans of the two 5k isomers was established by NOESY interactions between the diastereotopic protons 4-HA and 4-HB and hydrogen or alkyl groups in C-3 and C-5. Thus, the isomer which was assigned the cis configuration showed NOESY interactions of 4-HB at δ 1.83 with 3-Me and 5-CH₂, and of 4-HB at δ 2.27 with 3-H and 5-H. The 3,5-trans stereochemistry of the other 5k isomer was confirmed by the NOESY interactions between 4-HB at δ 1.95 with 3-H and 5-CH₂, and of 4-HA at δ 2.02 with 3-Me and 5-H.

In summary, the reported method is a highly stereoselective and efficient route for the synthesis of new functionalized pyrazolidines with a wide substitution pattern.

EXPERIMENTAL

Starting materials. The pyrazolium tetrafluoroborates were prepared by reaction of the respective pyrazoles with an approximately equivalent amount of triethyloxonium fluoroborate in dry methylene chloride at 25°C for several hours (12-20 h). The solvent was removed and the product was recrystallized from acetone-ether. 3-Methyl-4-nitro-1-phenylpyrazole and 3,5dimethyl-4-nitro-1-phenylpyrazole were obtained by nitration 13 of 3-methyl-1-phenylpyrazole 14 and 3,5-dimethyl-1-phenylpyrazole¹⁵, respectively. 4-Benzoyl-3,5-dimethyl-1-phenyl-pyrazole¹⁶ was prepared by benzoylation of 3,5-dimethyl-1-phenylpyrazole. 4-Ethoxycarbonyl-1,3,5trimethylpyrazole and 4-ethoxycarbonyl-3,5-dimethyl-1-phenylpyrazole were obtained by reaction of ethyl diacetylacetate¹⁷ in absolute ethanol with methylhydrazine and phenylhydrazine, respectively. 5-Ethoxycarbonyl-3-methyl-1-phenylpyrazole¹⁸ was synthesized by reaction of ethyl 2,4-dioxopentanoate¹⁹ with phenylhydrazine in glacial acetic acid together with 3-ethoxycarbonyl-5-methyl-1-phenylpyrazole, which was converted in 3-ethoxycarbonyl-5methyl-4-nitro-1-phenylpyrazole²⁰ by nitration. All 4-bromopyrazoles were obtained by bromination of pyrazoles according to the method of Cannon and Whidden²¹. Finally, 4-acetyl-3,5-dimethyl-1-phenylpyrazole was prepared by reaction of triacetylmethane with phenylhydrazine.

IR spectra were measured on a Pye-Unicam SP-1100 or a FT-Mattson Cygnus 100 spectrometer. $^1\text{H-NMR}$ and $^{13}\text{C-NMR}$ spectra were recorded on a Bruker AC-300 instrument operating at 300 MHz for ^1H and 75 MHz for ^{13}C measurements using CDCl3 as solvent. Chemical shifts being reported as $\delta(\text{ppm})$ relative to tetramethylsilane and J values are reported in Hz. Mass spectral data together with GLC data were obtained with a combined Hewlett-Packard GC(5890)-MS(5988A) unit. Reactions were monitored by TLC on a pre-coated plate of silica gel 60

(nano-SIL-20, Macherey-Nagel, Germany). Flash chromatography was performed on silica gel 60 (230-400 mesh, M-N).

General procedure for reduction of pyrazolium salts using lithium aluminium hydride. To a stirred solution of the pyrazolium salt (1.3 mmol) in dry ether or THF (10 cm 3) was added lithium aluminium hydride (0.1g, 2.6 mmol) in portions at room temperature. After 1 h., saturated ammonium chloride (5 cm 3) was added dropwise to the mixture which was then extracted with ether (3 x 10 cm 3). The combined extracts were dried (MgSO₄) and evaporated under reduced pressure. The crude residue was chromatographed (SiO₂, CH₂Cl₂).

General procedure for reduction of pyrazolium salts with sodium boranuide. To a stirred solution of the pyrazolium salt (1.5 mmol) in absolute ethanol (10 cm³) was added sodium boranuide (0.1g, 3 mmol) in portions at room temperature. After 2 h., saturated aqueous ammonium chloride (10 cm³) was added slowly to a mixture which was then extracted with ethyl acetate (3 x 10 cm³). The combined extracts were dried (MgSO4) and evaporated. The crude mixture could be separated by flash chromatography (SiO2, CH2Cl2).

Spectroscopic and analytical data for the pyrazolidines (2, 5 and 6) and 3-pyrazolines (3 and 4) are presented below. Results, yields and diastereoisomer distributions are displayed in Table 1.

trans-2-Ethyl-3-methyl-4-nitro-1-phenylpyrazolidine 2a; oil; R_f(CH₂Cl₂) 0.75; ν_{max} (film)/cm⁻¹ 1560 and 1370 (NO₂); δ_{H} 7.15 (2H, dd, J 7.1 and 8.7, NPh H_S meta), 6.96 (2H, d, J 8.7, NPh H_S orto), 6.74 (1H, t, J 7.1, NPh H para), 4.70 (1H, ddd, J 8.5, 7.8 and 5.1, 4-H), 4.35 (1H, dd, J 5.1 and 12.4, 5-H trans at NO₂), 3.98 (1H, dq, J 8.5 and 6.5, 3-H), 3.92 (1H, dd, J 7.8 and 12.4, 5-H cis at NO₂), 2.74 (2H,m, J 7.1 and 11.7, CH₂N), 1.17 (3H, d, J 6.5, 3-Me) and 1.02 (3H, t, J 7.1, MeCH₂N); δ_{C} 151.88 (=C), 128.78 (=CH meta), 119.23 (=CH para), 113.53 (=CH orto), 91.78 (HC-NO₂), 64.82 (HC-3), 52.87 (H₂C-5), 51.95 (CH₂N), 13.52 (3-Me) and 13.26 (MeCH₂N); m/z 235 (M⁺, 27%), 206 (M-Et, 5), 187 (M-NO₂-H₂, 4), 173 (M-NO₂-MeH, 23), 159 (M-NO₂-EtH, 75) and 77 (Ph⁺, 100). (Found: C, 61.4; H, 7.2; N, 18.0. C₁₂H₁₇N₃O₂ requires C, 61.2; H, 7.3; N, 17.8 %).

2-Ethyl-3-methyl-4-nitro-1-phenyl-3-pyrazoline 3a; oil; $R_f(CH_2Cl_2)$ 0.48; $v_{max}(film)/cm^{-1}$ 1650 (C=C), 1550 and 1360 (NO₂); δ_H 7.20 (2H, dd, J 7.2 and 8.5, NPh H_S meta), 6.99 (2H, d, J 8.5, NPh H_S orto), 6.71 (1H, t, J 7.2, NPh H para), 4.64 (2H, s, 5-H), 3.43 (2H, q, J 7.1 CH₂N), 2.48 (3H, s, 3-Me) and 1.12 (3H, t, J 7.1, Me CH₂N); m/z 233 (M⁺, 2%), 187 (M-NO₂, 9), 158 (M-NO₂-Et, 78), 157 (M-NO₂-EtH, 69), 130(42) and 77 (Ph⁺, 100).

trans,trans-2-Ethyl-3,5-dimethyl-4-nitro-1-phenylpyrazolidine t,t-2b; oil; R_f(CH₂Cl₂) 0.78; v_{max}(film)/cm⁻¹ 1550 and 1370 (NO₂); δ_H 7.15 (2H, dd, J 7.2 and 8.6, NPh H_S meta), 6.93 (2H, d, J 8.6, NPh H_S orto), 6.75 (1H, t, J 7.2, NPh H para), 4.73 (1H, dd, J 6.8 and 9.9, 4-H), 4.17 (1H, quintuplet, J 6.8, 5-H), 3.57 (1H, dq, J 9.9 and 6.7, 3-H), 2.97 and 2.61 (total 2H, dq, J 11.2 and 7.0, CH_AH_BN), 1.57 (3H, d, J 6.8 5-Me), 1.30 (3H, d, J 6.7, 3-Me) and 1.03 (3H, t, J 7.0, M_C CH₂N); δ_C 151.58 (=C), 128.89 (=CH meta), 119.45 (=CH para), 113.24 (=CH orto), 98.29 (HC-NO₂), 65.84 (HC-5), 63.31 (HC-3), 45.78 (CH₂N), 23.09 (5-Me), 13.77 (3-Me) and 12.56 (M_C CH₂N); m/z 249 (M⁺, 30%), 220 (M-Et, 6), 203 (M-NO₂, 1), 173 (M-NO₂-EtH, 80) and 77 (M_C Ch+, 100). (Found: C, 62.4; H, 7.8; N, 16.6.C₁₃H₁₉N₃O₂ requires C, 62.6; H, 7.7; N, 16.8 %).

cis,trans-2-Ethyl-3,5-dimethyl-4-nitro-1-phenylpyrazolidine c,t-2b; oil; Rf(CH₂Cl₂) 0.76; v_{max} (film)/cm⁻¹ 1555 and 1370 (NO₂); δ_{H} 7.20 (2H, dd, J 7.3 and 8.6, NPh H_S meta), 6.92 (2H, d, J 8.6, NPh H_S orto), 6.74 (1H, t, J 7.3, NPh H para), 5.16 (1H, dd, J 7.4 and 6.8, 4-H), 4.40 (1H, dq, J 7.4)

and 6.5 , 5-H), 3.85 (1H, quintuplet, J 6.8, 3-H), 2.80 (2H, m, CH₂N), 1.55 (3H, d, J 6.5, 5-Me), 1.14 (3H, t, J 7.1,MeCH₂N) and 0.82 (3H, d, J 6.8, 3-Me); δ_C 151.23 (=C), 128.71 (=CH meta), 118.83 (=CH para), 112.46 (=CH orto), 94.05 (HC-NO₂), 61.83 (HC-5), 59.64 (HC-3), 53.17 (CH₂N), 22.77 (5-Me), 14.68 (MeCH₂N) and 13.18 (3-Me); m/z 249 (M+, 24%), 220 (M-Et, 15), 203 (M-NO₂, 5), 173 (M-NO₂-EtH, 75) and 77 (Ph⁺, 100). (Found: C, 62.7; H, 7.9; N, 16.9.C₁₃H₁₉N₃O₂ requires C, 62.6; H, 7.7; N, 16.8 %).

trans,trans-3-Ethoxycarbonyl-2-ethyl-5-methyl-4-nitro-1-phenylpyrazolidine 2c; pale yellow crystals, m.p. 60-61°C (from hexane); $R_f(CH_2Cl_2)$ 0.66; $v_{max}(film)/cm^{-1}$ 1740 (OC=O), 1560 and 1380 (NO₂); δ_H 7.24 (2H, dd, J 7.1 and 8.6, NPh H_S meta), 7.10 (2H, d, J 8.6, NPh H_S orto), 6.92 (1H, t, J 7.1, NPh H para), 5.42 (1H, dd, J 8.0 and 7.2, 4-H), 4.45 (1H, d, J 8.0 , 3-H), 4.32 (2H, q, J 7.0 CH₂OCO), 4.20 (1H, dq, J 7.2 and 6.5, 5-H), 2.82 (2H, m, J 11.2 and 7.0, CH₂N), 1.62 (3H, d, J 6.5, 5-Me), 1.35 (3H, t, J 7.0, *Me*CH₂OCO) and 1.11 (3H, t, J 7.0, *Me*CH₂N); δ_C 167.57 (OC=O), 149.63 (=C), 128.61 (=CH meta), 121.06 (=CH para), 116.00 (=CH orto), 92.80 (HC-NO₂), 68.22 (HC-CO₂Et), 64.15 (HC-5), 62.26 (CH₂OCO), 49.29 (CH₂N), 20.96 (5-Me), 14.00 (*Me* CH₂OCO) and 12.63 (*Me* CH₂N); m/z 307 (M⁺, 22%), 278 (M-NO, 1), 188 (M-CO₂Et-NO₂, 22), and 173 (M-PhNNEt, 100). (Found: C, 58.8; H, 6.6; N, 13.9.C₁5H₂1N₃O₄ requires C, 58.6; H, 6.7; N, 13.7 %).

5-Ethoxycarbonyl-1-ethyl-3-methyl-4-nitro-2-phenyl-3-pyrazoline 4c; oil; $R_f(CH_2Cl_2)$ 0.38; $v_{max}(film)/cm^{-1}$ 1735 (OC=O), 1620 (C=C), 1560 and 1380 (NO₂); δ_H 7.50 (5H, m,Ph), 4.98 (1H, s, 5-H), 4.36 (2H, q, J 7.1, CH₂OCO), 2.96 (2H, q, J 7.0, CH₂N), 2.45 (3H, s, 3-Me), 1.25 (3H, t, J 7.1 *Me* CH₂OCO) and 1.17 (3H, t, J 7.0, *Me* CH₂N); m/z 305 (M⁺, 1%), 232 (M-CO₂Et, 100), 186 (M-CO₂Et-NO₂, 10) and 77 (Ph⁺, 18).

cis-4-Bromo-2-ethyl-3-methyl-1-phenylpyrazolidine 2d; oil; $R_f(CH_2Cl_2)$ 0.80; δ_H 7.20 (2H, dd, J 7.8 and 7.3, NPh H_8 meta), 6.98 (2H, d, J 7.8, NPh H_8 orto), 6.78 (1H, t, J 7.3, NPh H para), 4.68 (1H, dt, J 5.9 and 7.5, 4-H), 4.19 (1H, dd, J 7.5 and 10.6, 5-H *trans* at Br), 3.56 (1H, dd, J 7.5 and 10.6, 5-H *cis* at Br), 3.36 (1H, dq, J 5.9 and 6.9, 3-H), 2.79 (2H, m, CH₂N), 1.11 (3H, d, J 6.9, 3-Me) and 1.09 (3H, t, J 7.0, Me CH₂N); δ_C 152.78 (=C), 128.43 (=CH meta), 118.42 (=CH orto), 113.15 (=CH para), 61.81 (HC-Br), 57.83 (H₂C-5), 52.06 (CH₂N), 47.37 (HC-3), 16.99 (3-Me) and 13.43 (Me CH₂N); m/z 268 (M^+ , 28%), 239 (M-Et, 53), 189 (M-Br, 4), 159 (M-Br-EtH, 60) and 77 (Ph^+ , 100).(Found: C, 53.3; H, 6.5; N, 10.6.C1₂H₁₇BrN₂ requires C, 55.1; H, 6.8; N, 9.9 %).

cis,trans-4-Bromo-2-ethyl-3,5-dimethyl-1-phenylpyrazolidine 2e; oil; R_f(CH₂Cl₂) 0.82; δ_H 7.22 (2H, dd, J 7.2 and 8.7, NPh H_S meta), 7.00 (2H, d, J 8.7, NPh H_S orto), 6.79 (1H, t, J 7.2, NPh H para), 4.41 (1H, dd, J 5.9 and 8.1, 4-H), 3.77 (1H, dq, J 8.1 and 6.4, 5-H), 3.44 (1H, dq, J 5.9 and 6.8, 3-H), 2.87 (2H, m,J 7.2 and 11.9, CH₂N), 1.62 (3H, d, J 6.4, 5-Me), 1.14 (3H, t, J 7.2, MeCH₂N) and 1.05 (3H, d, J 6.8, 3-Me); δ_C 152.74 (=C), 128.45 (=CH meta), 118.37 (=CH para), 112.51 (=CH orto), 66.16 (HC-Br), 62.03 (HC-5), 55.53 (HC-3), 53.01 (CH₂N), 21.37 (5-Me), 16.98 (3-Me) and 13.47 (Me CH₂N); m/z 282 (M⁺, 8%), 253 (M-Et, 15), 173 (M-Br-EtH, 12) and 77 (Ph⁺, 100).(Found: C, 55.3; H, 6.7; N, 9.7.C₁₃H₁9BrN₂ requires C, 55.1; H,6.8;N, 9.9%).

cis,trans-4-Bromo-2-ethyl-3-methyl-1,5-diphenylpyrazolidine c,t-2f; oil; $R_f(CH_2Cl_2)$ 0.83; d_H (7.60.(2H, d, J 6.6) and 7.37 (3H, m), 5-Ph), 7.13 (2H, dd, J 7.2 and 8.8, NPh H_S meta), 6.91 (2H, d, J 8.8, NPh H_S orto), 6.76 (1H, t, J 7.2, NPh H para), 4.66 (1H, d, J 9.0, 5-H), 4.40 (1H, dd, J 9.0 and 5.8, 4-H), 3.54 (1H, dq, J 5.8 and 6.6, 3-H), 3.04 and 2.96 (2H, dq, J 11.6 and 7.2, CHAHBN), 1.17 (3H, d, J 6.6, 3-Me), and 1.26 (3H, t, J 7.2, Me CH₂N); d_C 152.81 , 128.32 , 118.64 and 112.78 (NPh), 142.28, 132.47, 128.15 and 126.43 (5-Ph), 75.03 (HC-5), 66.06 (HC-Br), 57.36 (HC-3), 52.54 (CH₂N), 17.36 (3-Ph), 75.03 (HC-5), 66.06 (HC-Br), 57.36 (HC-3), 52.54 (CH₂N), 17.36 (3-Ph), 75.03 (HC-5), 66.06 (HC-Br), 57.36 (HC-3), 52.54 (CH₂N), 17.36 (3-Ph), 75.03 (HC-5), 66.06 (HC-Br), 57.36 (HC-3), 52.54 (CH₂N), 17.36 (3-Ph), 75.03 (HC-5), 66.06 (HC-Br), 57.36 (HC-3), 52.54 (CH₂N), 17.36 (3-Ph), 75.03 (HC-5), 66.06 (HC-Br), 57.36 (HC-3), 52.54 (CH₂N), 17.36 (3-Ph), 75.03 (HC-5), 66.06 (HC-Br), 57.36 (HC-3), 52.54 (CH₂N), 17.36 (3-Ph), 75.03 (HC-5), 66.06 (HC-Br), 57.36 (HC-3), 52.54 (CH₂N), 17.36 (3-Ph), 75.03 (HC-5), 66.06 (HC-Br), 57.36 (HC-3), 52.54 (CH₂N), 17.36 (3-Ph), 75.03 (HC-5), 66.06 (HC-Br), 57.36 (HC-3), 52.54 (CH₂N), 17.36 (HC-3), 17.36 (HC-3), 17.36 (HC-3), 17.36 (HC-3), 17.36 (HC-3), 17.36 (H

Me) and 13.46 (*Me* CH₂N); m/z 344 (M⁺, 4%), 315 (M-Et, 2), 265 (M-Br, 2), 131 (M-Br-PhNNEt, 100) and 77 (Ph⁺, 59).(Found: C, 62.4; H, 6.3; N,8.3.C₁8H₂1BrN₂ requires C,62.6; H,6.1; N,8.1%).

trans,*trans*-4-Bromo-2-ethyl-3-methyl-1,5-diphenylpyrazolidine *t*,*t*-2f; oil; R_f(CH₂Cl₂) 0.83; δ_H (7.54.(2H, d, J 6.7) and 7.37 (3H, m), 5-Ph), 7.16 (2H, dd, J 7.2 and 8.4, NPh H_S meta), 6.97 (2H, d, J 8.4, NPh H_S orto), 6.79 (1H, t, J 7.2, NPh H para), 4.79 (1H, d, J 7.9, 5-H), 4.00 (1H, dd, J 7.9 and 10.8, 4-H), 3.41 (1H, dq, J 10.8 and 6.8, 3-H), 3.00 and 2.95 (2H, dq, J 11.5 and 7.1, CH_AH_BN), 1.37 (3H, d, J 6.8, 3-Me), and 1.24 (3H, t, J 7.1, *Me* CH₂N); m/z 344 (M⁺, 13%), 315 (M-Et, 20), 265 (M-Br, 5), 131 (M-Br-PhNNEt, 82) and 77 (Ph⁺, 100).(Found: C,62.8; H,6.2; N,8.0.C₁₈H₂₁N₂Br requires C,62.6; H,6.1; N,8.1%).

trans,trans-4-Ethoxycarbonyl-1,2,3,5-tetramethylpyrazolidine 2g; oil; R_f (CH₂Cl₂) 0.78; ν_{max} (film)/cm⁻¹ 1730 (OC=O); δ_{H} 4.15 (2H, q, J 7.2 CH₂OCO), 3.34 (2H, dq, J 11.6 and 6.6, 3-H and 5-H), 2.66 (6H, s, 2 x MeN), 2.48 (1H, t, J 11.6, 4-H), 1.23 (6H, d, J 6.6, 3-Me and 5-Me), and 1.20 (3H, t, J 7.2, Me CH₂OCO); δ_{C} 171.68 (OC=O), 63.25 (HC-CO₂Et), 59.83 (CH₂OCO), 58.33 (HC -Me), 43.71 (MeN), 14.16 (Me CH₂OCO) and 13.64 (Me CH); m/z 200 (M⁺, 44%), 185 (M-Me, 100), 155 (M-OEt, 31), and 111 (M-CO₂Et-MeH, 62). (Found: C,60.2; H,10.0; N,14.1.C₁₀H₂₀N₂O₂ requires C,60.0; H,10.1; N,14.0%).

4-Ethoxycarbonyl-1,2,3,5-tetramethylpyrazoline 3g; oil; R_f(CH₂Cl₂) 0.63; υ_{max} (film)/cm⁻¹ 1720 (OC=O) and 1640 (C=C); δ_{H} 4.18 (2H, q, J 7.1 CH₂OCO), 3.84 (1H, q, J 6.3, 5-H), 2.92 (3H, s, 2-Me), 2.38 (3H, s, 1-Me), 2.17 (3H, s, 3-Me), 1.35 (3H, t, J 7.1,Me CH₂OCO) and 1.22 (3H, d, J 6.3, 5-Me); δ_{C} 163.95 (OC=O), 154.27 (=C Me), 107.43 (=C-CO₂Et), 65.24 (HC-5), 56.82 (CH₂OCO), 46.21 (2-Me), 44.46 (1-Me), 14.35 (Me CH₂OCO), 14.01 (3-Me) and 13.26 (5-Me); m/z 188 (M⁺, 6%), 173 (M-Me, 100), 143 (M-OEt, 12), and 115 (M-CO₂Et, 8).

trans,trans-4-Ethoxycarbonyl-2-ethyl-3,5-dimethyl-1-phenylpyrazolidine 2h; oil; Rf(CH₂Cl₂) 0.71; v_{max}(film)/cm⁻¹ 1740 (OC=O); δ_H 7.20 (2H, dd, J 8.6 and 7.3, NPh H_s meta), 7.03 (2H, d, J 8.6, NPh H_s orto), 6.76 (1H, t, J 7.3, NPh H para), 4.16 (2H, q, J 7.1 CH₂OCO), 3.90 (1H, dq, J 8.4 and 6.5, 5-H), 3.31 (1H, dq, J 11.0 and 6.7, 3-H), 2.93 (1H, dd, J 11.0 and 8.4, 4-H), 2.91 and 2.60 (total 2H, dq, J 11.2 and 7.0, CH_AH_BN), 1.55 (3H, d, J 6.5, 5-Me), 1.29 (3H, d, J 6.7, 3-Me), 1.25 (3H, t, J 7.1, *Me* CH₂OCO) and 1.11 (3H, t, J 7.0, *Me*CH₂N); δ_C 172.44 (OC=O), 152.47 (=C), 128.63 (=CH meta), 118.24 (=CH orto), 113.06 (=CH para), 65.13 (HC-CO₂Et), 61.75 (HC-5), 60.81 (CH₂OCO), 59.48 (HC-3), 45.20 (CH₂N), 23.98 (5-Me), 14.66 (3-Me), 14.24 (*Me* CH₂OCO) and 12.64 (*Me* CH₂N); m/z 276 (M⁺, 78%), 247 (M-Et, 100), 231 (M-OEt, 5), 201 (M-OEt-EtH, 30), 173 (M-CO₂Et-EtH, 70) and 77(Ph⁺, 85). (Found: C,69.3; H,8.6; N,10.3.C₁6H₂4N₂O₂ requires C,69.5; H,8.7; N,10.1%).

4-Ethoxycarbonyl-2-ethyl-3,5-dimethyl-1-phenyl-3-pyrazoline 3h; oil; $R_f(CH_2Cl_2)$ 0.50; $v_{max}(film)/cm^{-1}$ 1720 (OC=O) and 1650 (C=C); δ_H 7.23 (2H, dd, J 7.8 and 8.3, NPh H_S meta), 6.95 (2H, d, J 7.8, NPh H_S orto), 6.90 (1H, t, J 8.3, NPh H para), 4.44 (1H, q, J 6.2, 5-H), 4.07 (2H, q, J 7.1, CH₂OCO), 3.40 and 3.07 (total 2H, dq, J 14.5 and 7.0, CH₄H_BN), 2.25 (3H, s, 3-Me), 1.43 (3H, d, J 6.2, 5-Me), 1.20 (3H, t, J 7.1,Me CH₂OCO) and 1.09 (3H, t, J 7.0, Me CH₂N); δ_C 165.07 (OC=O), 154.63 (=C Me), 152.34 (=C, Ph), 128.90 (=CH meta), 121.27 (=CH para), 115.18 (=CH orto), 103.50 (=C-CO₂Et), 68.18 (HC-5), 58.86 (CH₂OCO), 43.99 (CH₂N), 24.47 (5-Me), 14.37 (Me CH₂OCO), 14.22 (3-Me) and 12.01 (Me CH₂N); m/z 274 (M+, 10%), 259 (M-Me, 89), 231 (13), 229 (M-OEt, 8), 201 (M-CO₂Et, 1) and 77 (Ph+, 100).

4-Ethoxycarbonyl-1-ethyl-3,5-dimethyl-2-phenyl-3-pyrazoline 4h; oil; $R_f(CH_2Cl_2)$ 0.43; $v_{max}(film)/cm^{-1}$ 1725 (OC=O) and 1660 (C=C); δ_H 7.30 (2H, dd, J 7.3 and 8.2, NPh H_S meta), 6.97

(2H, d, J 8.2, NPh H_8 orto), 6.93 (1H, t, J 7.3, NPh H para), 4.18 (2H, q, J 7.1, CH2OCO), 3.99 (1H, q, J 6.2, 5-H), 2.75 (2H, q, J 7.2, CH2N), 2.18 (3H, s, 3-Me), 1.29 (3H, d, J 6.2, 5-Me), 1.23 (3H, t, J 7.1, Me CH2OCO) and 1.01 (3H, t, J 7.2, Me CH2N); δ_C 165.94 (OC=O), 152.56 (=C Me), 142.51 (=C, Ph), 128.56 (=CH meta), 124.15 (=CH para), 116.07 (=CH orto), 103.12 (=C-CO2Et), 62.45 (HC-5), 50.91 (CH2OCO), 43.74 (CH2N), 23.53 (3-Me), 14.14 (Me CH2OCO), 13.31 (5-Me) and 11.28 (Me CH2N); m/z 274 (M+, 8%), 259 (M-Me, 100), 231 (21), 229 (M-OEt, 10) and 77(Ph+, 31).

cis-2-Ethyl-3,5-dimethyl-4-methylen-1-phenylpyrazolidine *c*-6h; oil; $R_f(CH_2Cl_2)$ 0.82; $v_{max}(film)/cm^{-1}$ 1660 (C=C) and 890 (=CH₂); δ_H 7.30 (2H, dd, J 7.2 and 8.6, NPh H_S meta), 7.15 (2H, d, J 8.6, NPh H_S orto), 6.84 (1H, t, J 7.2, NPh H para), 5.08 (1H, t, J 2.3, C=CH_A), 5.00 (1H, t, J 2.5, C=CH_B), 4.17 (1H, m, 5-H), 3.62 (1H, m, 3-H), 2.78 and 2.41 (total 2H, dq, J 11.4 and 7.1, CH_AH_BN), 1.59 (3H, d, J 6.6 5-Me), 1.37 (3H, d, J 6.7, 3-Me) and 1.16 (3H, t, J 7.1, *Me* CH₂N); δ_C 157.53 (=C), 152.54, 128.69, 117.82 and 111.94 (Ph), 103.49 (=CH₂), 60.50 (HC-5), 59.12 (HC-3), 45.11 (CH₂N), 22.01 (5-Me), 13.09 (3-Me) and 12.22 (*Me* CH₂N); m/z 216 (M+, 20%), 201 (M-Me, 12), 187 (M-Et, 25) and 77 (Ph+, 100). (Found: C, 77.9; H,9.4; N,13.0. C₁4H₂0 N₂ requires C, 77.7; H,9.3; N,12.9%).

trans-2-Ethyl-3,5-dimethyl-4-methylen-1-phenylpyrazolidine *t*-6h; oil; $R_f(CH_2Cl_2)$ 0.82; $v_{max}(film)/cm^{-1}$ 1660 (C=C) and 890 (=CH₂); δ_H 7.25 (2H, dd, J 7.0 and 8.7, NPh H_S meta), 7.10 (2H, d, J 8.7, NPh H_S orto), 6.80 (1H, t, J 7.0, NPh H para), 5.12 (1H, dd, J 2.6 and J 1.8, C=CH_A), 5.06 (1H, dd, J 2.3 and 1.4, C=CH_B), 4.21 (1H, m, 5-H), 3.62 (1H, m, 3-H), 2.80 and 2.78 (total 2H, dq, J 10.3 and 7.1, CH_AH_BN), 1.59 (3H, d, J 6.6, 5-Me), 1.16 (3H, t, J 7.1, *Me* CH₂N) and 1.06 (3H, d, J 6.8, 3-Me); δ_C 158.21 (=C), 152.84, 128.54, 117.29 and 112.26 (Ph), 104.83 (=CH₂), 65.21 (HC-5), 62.10 (HC-3), 55.55 (CH₂N), 22.68 (5-Me), 15.26 (3-Me) and 12.36 (*Me* CH₂N); m/z 216 (M⁺, 80%), 201 (M-Me, 45), 187 (M-Et, 90) and 77 (Ph⁺, 100). (Found: C,77.6; H,9.2; N,13.1. C₁₄ H₂₀N₂ requires C,77.7; H,9.3; N,12.9%).

trans,trans - 2-Ethyl-4-(1-hydroxyethyl)-3,5-dimethyl-1-phenylpyrazolidine 5i; oil; mixture of diastereoisomers syn/anti; R_f(CH₂Cl₂) 0.32; v_{max} (film)/cm⁻¹ 3430 (OH); δ_{H} 7.22 (2H, dd, J 7.3 and 8.1, NPh H_S meta), 6.96 (2H, d, J 8.1, NPh H_S orto), 6.75 (1H, t, J 7.3, NPh H para), 4.01 (1H, m, CHOH), 3.59 (1H, m, 5-H), 3.27 (1H, m, 3-H), 2.83 and 2.59 (2H, dq, J 11.4 and 7.1, CH_AH_BN), 2.35 (1H, m, 4-H), 2.04 (1H, s br, OH), 1.52 and 1.46 (1H, d, J 6.7, 5-Me both isomers), 1.25 and 1.16 (3H, d, J 6.5, MeCHOH both isomers), 1.05 (3H, t, J 7.1Me CH₂N) and 0.85 and 0.90 (3H, d, J 6.6, 3-Me, both isomers); m/z 248 (M⁺, 31%), 233 (M-Me, 6), 219 (M-Et, 61), 199 (M-MeH-H₂O, 100), and 77 (Ph⁺, 53). (Found: C,72.7; H,9.8; N,11.5. C₁5H₂4N₂O requires C,72.5; H,9.7; N,11.3%).

Z,cis-2-Ethyl-4-ethylen-3,5-dimethyl-1-phenylpyrazolidine **Z**,c-6i; oil; Rf(CH₂Cl₂) 0.78; $\upsilon_{max}(film)/cm^{-1}$ 1670 (C=C) and 830 (C=CH); δ_{H} 7.28 (2H, dd, J 7.3 and 8.4, NPh H_S meta), 7.17 (2H, d, J 8.4, NPh H_S orto), 6.83 (1H, t, J 7.3, NPh H para), 5.22 (1H, qt, J 6.8 and 1.9, =CH), 4.31 (1H, dq, J 1.9 and 6.6, 5-H), 3.66 (1H, dq, J 1.9 and 6.7, 3-H), 2.83 and 2.60 (2H, dq, J 11.3 and 7.1, CH_AH_BN), 1.68 (3H, d, J 6.8, =CMe), 1.36 (3H, d, J 6.6, 5-Me), 1.25 (3H, d, J 6.7, 3-Me) and 1.08 (3H, t, J 7.1, Me CH₂N); δ_{C} 153.24, 128.36, 118.43 and 112.33 (Ph), 149.78 (=C), 114.23 (=CH), 60.04 (HC-5), 59.41 (HC-3), 45.21 (CH₂N), 21.46 (5-Me), 18.91 (=CMe), 12.72(3-Me) and 12.07 (Me CH₂N); m/z 230 (M⁺, 12%), 215 (M-Me, 100), 199 (M-EtH-H₂, 36) and 77 (Ph⁺, 21). (Found: C,78.0; H,9.7; N,12.4. C₁₅H₂₂N₂ requires C,78.2; H,9.6; N,12.2%).

E,*cis*-2-Ethyl-4-ethylen-3,5-dimethyl-1-phenylpyrazolidine **E**,*c*-6i; oil; R_f(CH₂Cl₂) 0.78; ν_{max} (film)/cm⁻¹ 1670 (C=C) and 830 (C=CH); δ_{H} 7.26 (2H, dd, J 7.3 and 8.1, NPh H_S meta), 7.10 (2H, d, J 8.1, NPh H_S orto), 6.85 (1H, t, J 7.3, NPh H para), 5.29 (1H, qt, J 7.4 and 2.1, =CH), 4.18 (1H,

dq, J 2.1 and 6.5, 5-H), 3.43 (1H, dq, J 2.1 and 6.8, 3-H), 2.75 and 2.50 (2H, dq, J 11.4 and 7.1, CHAHBN), 1.65 (3H, d, J 7.4, =CMe), 1.47 (3H, d, J 6.5, 5-Me), 1.12 (3H, d, J 6.8, 3-Me) and 1.05 (3H, t, J 7.1, Me CH2N); &C 155.41, 128.75, 118.27 and 112.62 (Ph), 150.03 (=C), 115.11 (=CH), 62.48 (HC-5), 57.23 (HC-3), 42.69 (CH2N), 25.32 (5-Me), 20.04 (=CMe), 12.45 (3-Me) and 12.23 (Me CH2N); m/z 230 (M⁺, 62%), 215 (M-Me, 44), 201 (M-Et, 78) and 77 (Ph⁺, 100). (Found: C,78.4; H,9.7; N,12.0. C15H22N2 requires C,78.2; H,9.6; N,12.2%).

syn,trans,trans-2-Ethyl-4-(hydroxy(phenyl)methyl)-3,5-dimethyl-1-phenylpyrazolidine s,t,t-5j; oil; R_f(CH₂Cl₂) 0.30; $\upsilon_{\text{max}}(\text{film})/\text{cm}^{-1}$ 3530 sharp and 3400 broad (OH); δ_H 7.64-7.27 (5H,m, CPh), 7.20 (2H, dd, J 7.2 and 7.7, NPh H_S meta), 7.00 (2H, d, J 7.7, NPh H_S orto), 6.73 (1H, t, J 7.2, NPh H para), 4.70 (1H, d, J 9.1, CHOH), 3.78 (1H, dq, J 6.8 and 6.3, 5-H), 2,96 (1H, m, 4-H), 2.92 (1H, m, 3-H), 2.88 and 2.78 (2H, dq, J 11.8 and 7.1, CH_AH_BN), 2.10 (1H, s br, OH), 1.64 (3H, d, J 6.3, 5-Me), 1.08 (3H, t, J 7.1, Me CH₂N) and 0.80 (3H, d, J 6.5, 3-Me); δ_C 152.38, 128.50, 117.32 and 112.29 (NPh), 143.08, 128.77, 126.81 and 125.45 (*Ph*COH), 75.29 (CHOH), 62.71 (HC-5), 60.48 (HC-3), 55.95 (HC-4), 51.66 (CH₂N), 25.19 (5-Me), 15.71 (3-Me), and 12.23 (Me CH₂N); m/z 310 (M+, 100%), 281 (M-Et, 57), 263 (M-Et-H₂O, 57), and 173 (M-Et-PhCHOH, 21). (Found: C,77.6; H,8.5; N,8.8. C₂0H₂6N₂O requires C,77.4; H,8.4; N,9.0%).

anti,trans,trans-2-Ethyl-4-(hydroxy(phenyl)methyl)-3,5-dimethyl-1-phenylpyrazolidine a,t,t-5j; oil; R_f(CH₂Cl₂) 0.28; ν_{max}(film)/cm⁻¹ 3450 (OH); δ_H 7.44-7.29 (5H,m, CPh), 7.19 (2H, dd, J 7.2 and 8.0, NPh H_S meta), 6.96 (2H, d, J 8.0, NPh H_S orto), 6.73 (1H, t, J 7.2, NPh H para), 4.55 (1H, d, J 8.2, CHOH), 3.26 (1H, quintuplet, J 6.7, 5-H), 3.12 (1H, dq, J 9.5 and 6.4, 3-H), 2.93 and 2.64 (total 2H, dq, J 11.3 and 7.1, CH_AH_BN), 2.35 (1H, ddd, J 6.8, 8.2 and 9.5, 4-H), 1.40 (3H, d, J 6.7, 5-Me), 1.06 (3H, t, J 7.1, Me CH₂N) and 0.87 (3H, d, J 6.4, 3-Me); δ_C 151.64, 128.15, 115.76 and 112.83 (NPh), 142.79, 129.33, 127.42 and 125.54 (*Ph*CHOH), 75.15 (CHOH), 64.81(HC-5), 61.40 (HC-3), 51.32 (CH₂N), 49.63 (HC-4), 23.46 (5-Me), 17.42 (3-Me), and 12.70 (Me CH₂N); m/z 310 (M⁺, 56%), 281 (M-Et, 40), 263 (M-Et-H₂O, 25), 173 (M-Et-PhCHOH, 18) and 77 (Ph⁺, 100). (Found: C,77.6; H,8.3; N,9.2. C₂0H₂6N₂O requires C,77.4;H,8.4; N,9.0 %).

Z,cis-2-Ethyl-3,5-dimethyl-1-phenyl-4-phenylmethylenpyrazolidine **Z**,c-6**j**; oil; Rf(CH₂Cl₂) 0.72; $\upsilon_{\text{max}}(\text{film})/\text{cm}^{-1}$ 1650 (C=C) and 820 (C=CH); δ_{H} 7.59-7.20 (7H, m, Ph), 7.12 (2H, d, J 7.7 Ph), 6.75 (1H, t, J 7.0, Ph), 6.32 (1H, s, =CHPh), 4.80 (1H, q, J 6.4, 5-H), 3.75 (1H, q, J 6.8, 3-H), 2.84 and 2.64 (2H, dq, J 11.3 and 7.1, CHAHBN), 1.63 (3H, d, J 6.4, 5-Me), 1.19 (3H, d, J 6.8, 3-Me) and 1.09 (3H, t, J 7.1, Me CH₂N); m/z 292 (M⁺, 40%), 277 (M-Me, 28), 263 (M-Et, 72) and 77 (Ph⁺, 100). (Found: C,82.0; H,8.2; N,9.8. C₂₀H₂₄N₂ requires C,82.1;H,8.3; N,9.6 %).

E,cis-2-Ethyl-3,5-dimethyl-1-phenyl-4-phenylmethylenpyrazolidine E,c-6j; oil; R_f (CH₂Cl₂) 0.72; v_{max} (film)/cm⁻¹ 1645 (C=C) and 820 (C=CH); δ_H 7.56-7.18 (7H, m, Ph), 7.08 (2H, d, J 7.8 Ph), 6.72 (1H, t, J 7.0, Ph), 6.39 (1H, s, =CHPh), 4.29 (1H, q, J 6.5, 5-H), 4.00 (1H, q, J 6.7, 3-H), 3.00 and 2.82 (2H, dq, J 11.2 and 7.1, CH_AH_BN), 1.54 (3H, d, J 6.5, 5-Me), 1.39 (3H, d, J 6.7, 3-Me) and 1.10 (3H, t, J 7.1, Me CH₂N); m/z 292 (M⁺, 74%), 277 (M-Me, 42), 263 (M-Et, 64), 233 (13) and 77 (Ph⁺, 100). (Found: C,82.3; H,8.3; N,9.4. C₂0H₂4N₂ requires C,82.1; H,8.3; N,9.6 %).

cis-2-Ethyl-5-hydroxymethyl-3-methyl-1-phenylpyrazolidine c-5k; oil; $R_f(CH_2Cl_2)$ 0.17; $v_{max}(film)/cm^{-1}$ 3387 br (OH); δ_H 7.26-7.19 (4H, m, Ph), 6.84-6.79 (1H, m, Ph), 3.85 (2H, m, CHAHBO), 3.71 (1H, m, 5-H), 3.19 (1H, ddq, J 5.8, 12, 4 and 6.7, 3-H), 2.89 and 2.60 (total 2H, dq, J 11.5 and 7.1, CHAHBN), 2.27 (1H, ddd, J 12.1, 6.8 and 5.8, 4-H trans at Me and CH2OH), 1.96 (1H, s br, OH), 1.83 (1H, ddd, J 12.1, 8.2 and 12.4, 4-H cis at Me and CH2OH), 1.29 (3H, d, J 6.7, 3-Me) and 1.13 (3H, t, J 7.1, Me CH2N); δ_C 153.54 (=C), 128.32 (=CH meta), 118.59 (=CH para), 113.67 (=CH

orto), 65.60 (CH₂OH), 65.60 (HC-5), 57.38 (HC-3), 43.56 (CH₂N), 35.38 (H₂C-4), , 15.27 (3-Me) and 12.89 (Me CH₂N); m/z 220 (M^+ , 32%), 205 (M-Me, 2), 191 (M-Et, 42), 189 (M-CH₂OH, 38), 159 (M-CH₂OH-EtH, 9) and 77 (M-Ph-100). (Found: C,71.1; H,9.2; N,12.5. C₁₃H₂₀N₂O requires C,70.9; H,9.1; N,12.7%)

trans-2-Ethyl-5-hydroxymethyl-3-methyl--1-phenylpyrazolidine *t*-5k; oil; R_f (CH₂Cl₂) 0.19; v_{max} (film)/cm⁻¹ 3380 br (OH); δ_H 7.26-7.19 (4H, m, Ph), 6.84-6.79 (1H, m, Ph), 3.92 (1H, m, 5-H), 3.85 (2H, m, CH_AH_BO), 3.30 (1H, dquintuplet, J 9.3 and 6.7, 3-H), 2.79 (2H, m, CH₂N), 2.20 (1H, s br, OH), 2.02 (1H, ddd, J 12.3, 10.3 and 5.9, 4-H trans at CH₂OH and cis at Me), 1.95 (1H, ddd, J 12.3, 7.8 and 6.7, 4-H *trans* at Me and cis at CH₂OH), 1.14 (3H, t, J 7.1*Me*CH₂N) and 0.96(3H, d, J 6.8, 3-Me); δ_C 153.87 (=C), 128.50 (=CH meta), 118.72 (=CH para), 113.67 (=CH orto), 67.67 (CH₂OH), 67.06 (HC-5), 59.06 (HC-3), 52.69 (CH₂N), 37.07 (H₂C-4), 20.87 (3-Me) and 13.58 (*Me* CH₂N); m/z 220 (M⁺, 26%), 205 (M-Me, 3), 191 (M-Et, 20), 189 (M-CH₂OH, 39), 159 (M-CH₂OH-EtH, 2) and 77 (Ph⁺, 100). (Found: C,70.8; H,9.0; N,12.8. C₁₃H₂0N₂O requires C,70.9; H,9.1; N,12.7%).

3-Ethoxycarbonyl-1-ethyl-5-methyl-2-phenyl-3-pyrazoline 4k; oil; $R_f(CH_2Cl_2)$ 0.21; $v_{max}(film)/cm^{-1}$ 1725 (OC=O), 1660 (C=C); δ_H 7.30 (2H, dd, J 7.4 and 8.3, Ph H_8 meta), 7.12 (2H, d, J 8.3, Ph H_8 orto), 6.95 (1H, t, J 7.4, Ph H para), 6.40 (1H, d, J 3.1, 4-H), 4.28 (2H, q, J 7.1, CH2OCO), 3.62 (1H, dq, J 3.1 and 6.7, 5-H), 2.99 (2H, m, CH2N), 1.26 (3H, t, J 7.1, Me CH2OCO), 1.13 (3H, t, J 7.2, Me CH2N) and 1.07 (3H, d, J 6.7, 5-Me); m/z 260 (M⁺, 6%), 245 (M-Me, 45), 231 (M-Et, 5), 215 (M-OEt, 32), 187 (M-CO2Et, 18) and 77(Ph⁺, 100).

trans-5-Ethoxycarbonyl-2-ethyl-3-methyl-1-phenylpyrazolidine 2k; oil; $R_f(CH_2Cl_2)$ 0.65; $v_{max}(film)/cm^{-1}$ 1738 (OC=O); $δ_H$ 7.28-7.17 (4H, m, Ph), 6.87-6.77 (1H, m, Ph), 4.21 (2H, q, J 7.1 CH₂OCO), 3.98 (1H, dd, J 7.2 and 6.4, 5-H), 3.60 (1H, m, 3-H), 2.57 and 2.87 (2H, dq, J 11.5 and 7.0, CH₄H_BN), 2.33 (1H, ddd, J 9.8, 6.4 and 12.4, 4-H trans at CO₂Et and cis at Me), 2.23 (1H, ddd, J 7.2, 5.5 and 12.4, 4-H cis at CO₂Et and trans at Me), 1.21 (3H, t, J 7.1, Me CH₂OCO), 1.18 (3H, d, J 6.6, 3-Me) and 1.11 (3H, t, J 7.0, Me CH₂N); m/z 262 (M⁺, 44%), 233 (M-Et, 42), 189 (M-CO₂Et, 73) and 77(Ph⁺, 100). (Found: C,68.5; H,8.5; N,10.5.C₁5H₂2N₂O₂ requires C,68.7; H,8.4; N,10.7%).

X-Ray-crystal structure determination of the pyrazolidine 2c. Suitable yellow crystals of 2c were grown from hexane.

Crystal data. C₁₅H₂₁N₃O₄, M=307.35, monoclinic, P₂₁/c, a=8.733(2), b=8.058(2), c=23.985(5) A, β =100.20(3)°, Z=4, F(000)=656, D_C=1.229 g.cm⁻³, λ (CuK α)= 1.54178 A, μ (CuK α)=0.746 mm⁻¹.

Structure, analysis and refinement. 1758 reflections (1705 unique) were collected on a Rigaku AFC7 four-circle diffractometer coupled to a copper target rotating anode X-ray source, using $\omega/2\theta$ method (50<20<450). Three standard reflections were measured every 100 reflections as orientation and intensity control, and no significant intensity decay was observed. The structure was solved by direct methods, and subsequent Fourier difference techniques²². The structure was refined by a full-matrix least-squares based on F² to R=0.056 with all non-H atoms anisotropic²³; H-atoms were placed in idealized positions and allowed to ride on the relevant C atom. Largest peak and hole in the final differences map 0.18 and 0.228 eA-3, respectively. The atomic coordinates, bond distances and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.

REFERENCES

- Alberola, A., González, A.M., Laguna M.A. and Pulido, F.J., Synthesis, 1982, 1067; Alberola, A., González, A.M., Laguna M.A. and Pulido, F.J., Synthesis, 1983, 413; Alberola, A., González, A.M., Laguna M.A. and Pulido, F.J., Synthesis, 1984, 510; Alberola, A., González, A.M., Laguna M.A. and Pulido, F.J., J. Org. Chem., 1984, 49, 3423.
- Alberola, A., Antolín, L.F., González, A.M., Laguna, M.A. and Pulido, F.J., J. Chem. Soc. Perkin Trans. I, 1988, 71.
- 3. Alberola, A., González, A.M., Laguna M.A. and Pulido, Synth. Commun., 1989, 16, 673.
- 4. Cal, T. de la, Cristobal, B.I., Cuadrado, P., González A.M. and Pulido, F.J., Synth. Commun., 1989, 19, 1039.
- 5. Cuadrado, P., González A.M. and Pulido, F.J., Synth. Commun., 1988, 18, 1847.
- 6. Alberola, A., Antolín, L.F., González, A.M., Laguna, M.A. and Pulido, F.J., *I. Heterocyclic Chem.*, 1986, 23, 1035; Alberola, A., Antolín, L.F., González, A.M., Laguna, M.A. and Pulido, F.J., *Heterocycles*, 1987, 25, 393.
- 7. Alberola, A., Antolín, L.F., Cuadrado, P., González, A.M., Laguna, M.A. and Pulido, F.J., Synthesis, 1988, 203.
- 8. Omar, N.M. and El'Tsov, A.V. Zh. Org. Khim., 1968, 4, 726; C.A. 1968, 69, 2903v.
- 9. Elguero, J., Jacquier, R. and Tizane, D., Bull. Soc. Chim. France, 1970, 1121.
- Alberola, A., Bañuelos, L.A., Cuadrado, P., González, A.M. and Pulido, F.J., Org. Prep. Proc. Int., 1989, 21, 231.
- 11. Bañuelos, L.A., Cuadrado, P., González, A.M. and Pulido, F.J., Org. Prep. Proc. Int., 1992, 24, 181.
- 12. Toupet, L., Delugeard, Y., Messager, J.C., Acta Cryst., 1982, 338, 1377.
- 13. Dal Monte Casoni, D., Gazz. Chim. Ital., 1959, 89, 1539.
- 14. Franke, W. and Kraft, R., Angew. Chem., 1955, 67, 395.
- 15. Knorr, L., Chem. Ber., 1887, 20, 1104.
- 16. Grandberg, I.I. and Kost, L., Zhur. Obshch. Khim., 1960, 30, 203.
- 17. Spassov, A., Org. Synth. Coll., 1955, III, 390.
- 18. Finar, I.L. and Hurlock, R.J., J. Chem. Soc., 1958, 3259.
- 19. Marvel, C.S. and Dreger, E.E., Org. Synth.Coll., 1940, I, 231.
- 20. Parrini, V., Ann. Chim., 1957, 47, 929.
- 21. Cannon, G.W. and Whidden, H.L., J. Org. Chem., 1952, 17, 685.
- SHELXTL-PLUS, Program Version 4.0, Siemens Analytical X-Ray Instruments, Madison, WI, 1990.
- SHELX 93, Program for Crystal Structure Refinement, G.M. Sheldrick, University of GÖttingen, 1993.

(Received in UK 15 April 1996; revised 13 May 1996; accepted 16 May 1996)